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“...the progress of chemistry depends more
than ever on applications of mathematics.”

Vladimir Prelog (1986) [1]

Abstract

The graph-theoretical (topological) distance matrix and the geomeltric (topographic)
distance matrix and their invariants (polynomials, spectra, determinants and Wiener
numbers) are presented. Methods of computing these quantities are discussed. The uses
of the distance matrix in both forms and the related invariants in chemistry are surveyed.
Special attention is paid to the 2D and 3D Wiener numbers, defined respectively as one
half of the sum of entries in the topological distance matrix and the topographic distance
matrix. These numbers appear to be very valuable molecular descriptors in the structure—
property correlations.

1. Introduction

The distance matrix is a mathematical object which is being increasingly used
in both graph-theoretical (topological) [2—4] and geometric (topographic) [5-7]
versions in chemistry [8— 14]. The distance matrix has also found a considerable use
in other areas much less mathematical than applied mathematics [2—-4,7,15-22],
physics [5,6,23] or chemistry such as [10] anthropology, archeology, genetics,
geology, history, orithology, philology, psychology, sociology, etc. The origins of
the distance matrix may be traced back to the very first paper of Cayley [24].
However, this matrix was first introduced in rudimentary form by Brunel [25] in
1895.
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The distance matrix is used in chemistry in explicit and implicit forms [10].
The earliest explicit use of the distance matrix in chemistry is work by Clark and
Kettle [26] in 1975, although in biochemistry it was used in disguise somewhat
earlier (in 1971) [27]. Clark and Kettle have used the distance matrix for studying
the permutational isomers of stereochemically nonrigid molecules. These authors
have distinguished between the various interconversion mechanisms for pairs of
permutational isomers by determining the shortest path sequence necessary to effect
the rearrangement. These shortest paths were used in the construction of an appropriate
distance matrix. Clark and Kettle have also mentioned in their work that to their
knowledge, there are no details on the distance matrix in the chemical literature.
(This was not quite so because of the paper by Hosoya [28] which appeared in 1971
and in which the author has defined the distance matrix.) Therefore, the purpose of
their work was also to remedy this omission and to introduce the distance matrix
to the chemical community-at-large. Today, of course, the situation is quite different
after the well-written review articles by Rouvray [8,10,29] and books on chemical
graph theory edited or authored by Balaban [30], King [31], and Trinajsti¢ {9, 14,32].
However, there is still a lack of a single source of information in the literature on
the topological and topographic distance matrices, their invariants and applications.
The present authors hope to remedy this situation with this article. This was indeed
the main motivation for preparing the article.

The distance matrix in explicit form is also employed to generate the distance
polynomials and the distance spectra of various molecular structures [13,33-35].

The earliest implicit use of the distance matrix in chemistry was made, albeit
unknowingly, by Wiener {36] in 1947. He wanted to develop a structure—property
model for predicting physical parameters of alkanes. In order to do that, Wiener very
cleverly introduced the path number as a numerical characteristic of a molecule. The
path number he defined as the sum of the distances between any two carbon atoms
in alkane in terms of the carbon-carbon bonds. Wiener also introduced the polarity
number, which is defined as the number of pairs of carbon atoms separated by three
carbon—carbon bonds. By using a linear combination of the path number and the
polarity number, Wiener was able to obtain a fair prediction of alkane boiling
points [36]. In view of the pioneering contribution of Wiener in recognizing the
significance of the number of paths in a molecular skeleton, the term “the Wiener
index” (e.g. ref. [37]) or “the Wiener number” (e.g. ref. [38]) has been adopted for
the number of distances in all chemical structures. The connection between the distance
matrix and the Wiener number was first pointed out by Hosoya [28]: The Wiener
number is simply equal to the half-sum of the elements of the distance matrix.

The distance matrix in both topological and topographic forms has been used
continuously as a source for deriving novel topological and topographic indices
[39-54]. This appears to date to be one of the most important uses of this matrix
in chemistry {8,10,29,55--57].

This article is structured as follows. In section 2, the graph-theoretical distance
matrix and the related topological invariants (the distance polynomial, the distance
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spectrum, the determinant and the two-dimensional Wiener number) and some of
their uses in chemistry are presented. In section 3, the geometric-distance matrix
and the corresponding topographic invariants (the geometric-distance polynomial,
the geometric-distance spectrum, the determinant and the three-dimensional Wiener
number) and some of their applications in chemistry are discussed. The article ends
with concluding remarks in section 4.

2. The graph-theoretical distance matrix and the related invariants

2.1.  THE DISTANCE MATRIX

The distance matrix D = D(G) of a labeled connected graph G is a real
symmetric N X N matrix whose elements (D)ij are defined as [2,9,14]

D), = Li ifi#j a
Y710 if i=, )

where [;; is the length of the shortest path, i.e. the minimum number of edges,
between the vertices i and j in G. The length /;; is also called the distance [58-60]
between the vertices / and j in G, hence the name “distance martix”, The term
related to the length has been also used. For example, in 1956 Kruskal used the term
“matrix of lengths” [61]. Certainly, this latter term is more poetic, but less handy.
Therefore, the pragmatic mathematicians adopted the former term for their use. The
graph-theoretical distance matrix will be denoted in this article by 2-D. The meaning
of 2 is that the matrix in question is associated with the two-dimensional realization
of molecular graphs. As an example, the distance matrix of a labeled tree T
corresponding to the carbon skeleton of 2,4-dimethylhexane is given in fig. 1.

In the case of edge-weighted graphs Ggw [62-64], the distance matrix entries
are edge-weighted [15,16,22,60]:

(D)--— Wij ifi¢j (2)
Ylo0 if i=,

where w;; is the minimum sum of edge-weights along the path between the vertices
i and j, which is not necessarily the shortest possible path between these two
vertices in Ggy as it would be in terms of just unweighted edges. Hence, in the case
of the weighted distance matrix, the entry (D);; is the minimum path-weight between
the vertices i and j in Ggw [16]. The weighted distance matrices, even with negative
entries, have been studied [60]. If the edge-weights in Ggw are all unity, then (1)
and (2) are clearly identical. The distance matrix of an edge-weighted graph Gpw
is given in fig. 2.
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Fig. 1. The graph-theoretical distance matrix of a (labeled) tree
T corresponding to the carbon skeleton of 2,4-dimethylhexane.
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Fig. 2. The distance matrix of a labeled edge-weighted graph Ggy.
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The diagonal elements of the distance matrices belonging to the vertex- and
edge-weighted graphs Gygw [64—66] no longer vanish [67]:

(D); = {

where w;; is the weight of the vertex i in Gygw. Since in chemical graph theory the
vertex- and edge-weighted graphs serve to depict molecules containing hetero-
atoms [64], there are a number of proposals in the chemical literature to define the
vertex- and edge-weights [41,55,67-71].

The construction of the distance matrix for large complex graphs is a nontrivial
task and for its completion, a computer must be used. Most commonly, the distance
matrix of a graph G has been generated using powers of the corresponding adjacency
matrix of G [72,73]. However, there are algorithms and computer programs in the
literature which are much faster than the matrix power method [35,74-80]. For
example, Bersohn’s algorithm [75] is about thirty times faster than the method
based on powers of the adjacency matrix when employed to construct the distance
matrices for steroids on an IBM 3033 computer. The weak point of the matrix
power method is the number of matrix multiplications required by this procedure,
since computers multiply much more slowly than they store, fetch, add and subtract.
The method of Bersohn does not involve any multiplications at all. One of the
fastest methods to date for the construction of the distance matrix appears to be [49]
the computational method developed by Miiller et al. [78].

Wi if i?‘—'j
3

Wi if i=j,

Yy

15
V2
1.5 4.0
V. v
3 25 4 v3
Gew Gew

00 15 30 55
1.5 00 15 4.0
30 15 00 25
55 40 25 0.0

2-D (Ggy) = 2-D (Ggw) =

Fig. 3. Two edge-weighted graphs Ggy
and Ggy with identical distance matrices.
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There are several interesting observations concerning the distance matrix. For
example, the adjacency matrix and the distance matrix are identical for complete
graphs. Similarly, non-isomorphic weighted graphs with identical distance matrices
can be constructed (e.g. ref. [16]). One such example is shown in fig. 3. The same
is not possible in the case of the adjacency matrix: Two non-isomorphic (unweighted
or weighted) graphs cannot possess identical adjacency matrices.

The distance matrix can also be of help [75] in partitioning the atoms of the
molecule into equivalence classes [81—84]. For instance, if there is a unique atom,
atoms which have distances of different lengths from the unique atom must be in
different equivalence classes. In general, the set of distances to distinguishable
kinds of atoms could be made the basis for further partitions, and so on, recursively
[75]. A similar procedure was used for detecting the graph center in polycyclic
graphs [85-87].

22. THE DISTANCE POLYNOMIAL AND THE DISTANCE SPECTRUM
The distance polynomial 8(G,x) of a graph G is defined as [18,19,33,34)
O(G;x) = det |xI — D|, 4)

where I is the N X N unit matrix. The coefficient form of the distance polynomial
is given by
N
3(G;x) = cox™ — chx’v"‘. (5)

n=1
The expansion of the determinant (4) produces the coefficients of the polynomial:

N-1 N-2 _

8(G;x) = coxN —c1x¥N 1 —cyx ci — CNo1X —CN . (6)

However, this is a time-consuming procedure which can be replaced by faster computer-
oriented methods such as the modified forms of the Le Verrier—Faddeev—Frame
(LVFF) method [13,35,88-94]. The modified form of the LVFF method, which uses
diagonal matrices, is employed in this work [95]. The distance matrix can be conveniently
diagonalized by means of the Householder tridiagonalization-QL algorithm (e.g. ref.
[96]). Once the matrix is brought to a tridiagonal form, the eigenvalues are directly
read. The collection of eigenvalues of the distance matrix is called the distance
spectrum of G. For example, the distance matrix and distance spectrum of benzene
are given below:

2-D (benzene) = @)

W N O
[SS IR B = Rl
— T e R WD B

WO
= O = W
O =R W N
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distance spectrum: {9, 0,0, -1, -4, —4}. (8)
The coefficients ¢, in the LVFF method can be computed by

Cp = L D,, )
n

where the matrix D, is given by
D,=DB,. (10)

In this expression, D is the distance matrix and B, is an auxiliary matrix defined
as
B,=D,-c,lL an

The above is an iterative procedure which ends when the B-matrix vanishes, i.e.
when n=N:

BN= DN—CNI—"‘-O. (12)

Since in the modified LVFF method the distance matrix enters in the diagonal form,
instead of D, and B, matrices one uses their diagonal forms. Therefore, instead of
multiplying matrices, one multiplies sets of numbers representing eigenvalues of
these matrices. Therefore, the above formulae (9)—(12) may be given in the different
form:

Mz

ca= %;=1(D")ii’ 13)
D,)ii = (D) (B, (14)
(B)is = (D,)ii— (caDii (15)
(Bx)ii = (D) (cxDi; = 0. (16)

This modification of the LVFF method may be schematically presented as follows:
G-oD-{x}—> E(Dl)ii - (1 —)E(Bl)[; —-)Z(Dz),'i —C> ...
i i i
en-1 = D (By1)ii = 2 (D )i = ey = Y, (By)i > 0. a7
i i i

As an example, the distance spectrum of benzene (8) will be used for the
computation of the distance polynomial of benzene via the modified LVFF method.
This is shown in table 1.
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Table 1
The computation of the distance polynomial of benzene via the modified
Le Verrier—Faddeev—Frame method.
) Distance spectrum of benzene
{9,0,0, -1, -4, -4}
(ii) Y(D)yi=Y(D); =0
(Cl - O i
(iii) {Bii= M- Di)izr, . 6=1(9.0,0,-1,-4,-4)
{(Do)ii = D)y Byliizs,... 6= {81.0,0,1, 16, 16}
=33 (Dy); =57
(iv) {(Bii= Da)i — (eaDiiliz1, ... 6= (24,0,0,-56, 41, - 41}
{(Da);i= (D) Badiidiy, .. 6=1216,0,0,56, 164, 164}
€3 = %E(Da )i =200
;
(v) {(Ba)i = (Da); - (3D}, ... ,6= (16,0, 0, ~ 144, - 36, ~36)
{(Da)ii = (DY Badichi=y, ... 6= {144, 0,0, 144, 144, 144)
cs =4 2(Dy); =144
;
(vi) {(Ba)ii = Dy)ii— (caDii}i=1.....6=10,0,0,0,0,0)
(vii) Distance polynomial of benzene

5(benzene; x) = x% - 57x* — 200x> - 144x2

It is interesting to point out that the distance polynomials of isospectral
molecules (graphs) are generally different. A similar finding was also reported by
Balasubramanian [35]. Isospectral molecules are non-isomorphic molecules (graphs)
which possess identical spectra of their adjacency matrices [97—105]. The smallest
pair of isospectral alkanes are two C;q alkanes [106]: 2,3-dimethyloctane (1) and
3,5-dimethyloctane (2). Trees corresponding to their carbon skeletons are shown
in fig. 4. Their characteristic polynomials are identical: o(1; x) = at(2, x) = x'°
—9x® +26x5—27x* + 8x2, and, consequently, their eigenvalue spectra are also identical:
spectrum of 1 = spectrum of 2 = {£2.089, £1.681, +1.149, +0.701, 0, 0}. However,

their distance polynomials are different:
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/\r\(\/

T T,

Fig. 4. Trees T; and T, depicting, respectively, the carbon
skeletons of 2,3-dimethyloctane and 3,5-dimethyloctane.

8(1;x) = x10 — 593x8 — 7256x7 — 36624 x% — 97568x° — 149536x*
— 135424x3 - 71168x* - 19968x — 2304, (18)

8(2;x) = x'% - 540x8 — 6800x7 — 35264 x° — 95744 x5 — 148416x*
—135168x3 — 71168x2 — 19968x — 2304, (19)

and their distance spectra also differ:

distance spectrum of 1= {29.709, -0.431, -0.547, -0.659, —0.894,
-1.265,-2.000,-2.802, —4.839, -16.272}, (20)

distance spectrum of 2 = {28.705, —0.460, -0.501, -0.661, -0.874,
-1.272,-1.933, -3.185,-5.301, - 14.518}. @2n

An additional example is the classic pair of isospectral molecules [107]: 1,4-
divinylbenzene (3) and 2-phenylbutadiene (4). Their graphs are given in fig. 5.

Ga Gy

Fig. 5. Graphs G; and G, representing the carbon
skeletons of 1,4-divinylbenzene and 2-phenylbutadiene.
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Their characteristic polynomials and spectra are identical: o.(3; x) = o(4;x) = x10
— 10x® + 33x® — 44x* + 24x% — 4 and spectrum of 3 = spectrum of 4 = {£2.214, £1.675,
11.000, £1.000, £0.539}. However, the distance polynomials of these two molecules
are different:

3(3; x) = x19 - 449x® — 5032x7 — 22360x° — 48000x°
— 51856x* — 27008x> — 5376x2, (22)

8(4; x) = x1%— 405x® — 4540x7 — 20588x® — 45808x°
— 51280x* — 27264x> — 5376x2, (23)

and consequently their distance spectra are also different:

spectrum of 3 = {26.039, 0.000, 0.000, -0.597, -0.752,
—-1.000, -2.000, —4.000, -4.287, —~13.403}, 24

spectrum of 4 = {24.960, 0.000, 0.000, -0.493, -0.839,
-1.121,-2.433,-3.935, -4.000, —12.140}. (25)

The above appears to be very encouraging in that the distance polynomials
could be different and more discriminating compared to characteristic polynomials
of graphs in general. However, for trees it has been shown that non-isomorphic
trees can have the same distance polynomial [108,109]. The smallest such pair,

Ts Te
Fig. 6. Trees T5 and Ty depicting, respectively, the carbon skeletons of
8-ethyl-2,7-dimethyl-5-propyldecane and 8-ethyl-2,4-dimethyl-5-propyldecane.

discovered by McKay [108] is shown in fig. 6. They possess the following distance
polynomial [35]:



Z. Mihali¢ et al., The distance matrix in chemistry 233

8(Ts or Tg;x) = x'7 —3176x1° — 110380x'* — 1683216x!3 — 14561424 x2

— 79661344 ! — 293089536x10 — 753990272x° — 1390462464 x®
—1865146368x” — 1830330368x° — 1310025728x> — 674648064 x*
— 242974720x3 — 57982976x% — 8224768x — 524288 (26)

and the distance spectrum:

{71.385,-0.417,-0.452,-0.504, -0.592, -0.650, -0.764, -0.827, - 1.198,
—-1.406,-1.687,-2.000, —3.444, -5.236, - 6.918, - 14.565, —-30.724}. (27)

Hence, in general, there could be two non-isomorphic trees with the same distance
polynomial. Consequently, it is not evident if the distance polynomials are more
discriminating than the characteristic polynomials.

The coefficients of the distance polynomials and the distance spectra of un-
directed and simple graphs possess a number of interesting properties [18,19,33--35,
109,110]. In order that the reader can more easily follow at least some of the
arguments given below, the distance polynomials of the lowest alkanes are given
in table 2 and their distance spectra in table 3.

Some of the properties of the graph-theoretical distance polynomials and
their eigenvalue spectra are summarized as follows:

(1) The coefficients cq and ¢, at x" and xV ! are, respectively, always unity
and zero. The ¢, coefficient is equal to zero because of the relationship:

N
=Y x=tD, (28)
i=1
where x; are the elements of the distance spectrum. However, the sum of elements
of the distance spectrum is always zero.

(2) The coefficient at x¥ ~2 is the half-sum of the squares of clements of the
distance matrix:

=%, 3, (DY);. (29)
i

(3) The last coefficient cy of the distance polynomial of a tree T with N
vertices is given by i
ey = (DVH(2NE(N -1, (30)

This is so because the last coefficient of the (distance) polynomial is equal to the
determinant of the (distance) matrix:

ey = (-1 det |D| @31)
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The graph-theoretical distance polynomials of the lowest alkanes.

Table 2

Alkane

Coefficients of the polynomial

o cy cq Cs Cs C cq s
propane 1 0 -6 -4

2-methylpropane 1 0 - 15 -28 -12

butane 1 0 -20 -32 -12

2,2-dimethylpropane 1 0 - 28 - 88 -96 -32

2-methylbutane 1 0 -38 -116 ~112 -32

pentane 1 0 -50 -140 -120 -32

2,2-dimethylbutane 1 0 -60 -272 -468 ~336 - 80
2,3-dimethylbutane 1 0 -65 -296 -504 -352 - 80

2-methylpentane 1 0 -84 -368 -580 -368 - 80

3-methylpentane 1 0 -77  -356 -572 -368 - 80

hexane 1 0 -105 -448 -648 -384 - 80
2,2,3-trimethlybutane 1 0 ~-96 -584 -1464 -1776 -992 -192
2,2-dimethylpentane 1 0 -122  -732 -1752 -1984 -1024 192
3,3-dimethylpentane 1 0 - 108 -680 -1688 -1952 -1024 -192
2,3-dimethylpentane 1 0 ~120 -752 -1840 -2080 -1056 192
2,4-dimethylpentane 1 0 -134 -804 -1904 -2112 1056 192
2-methylhexane 1 0 -164 -976 -2208 -2288 -1088  -192
3-methylhexane 1 0 -148 -928 -2160 -2272 -1088  -192
3-ethylpentane 1 0 -132 -876 -2112 -2256 -1088  ~192

heptane 1 0 -196 -1176 -2520 -2464 -1120 -192
2,2,3,3-tetramethylbutane 1 0 -136 -1040 -3468 -6112 -5792 -—2688 448
2,2.3-trimethylpentane 1 0 -167 -1320 -4384 7440 6592 -2816 448
2.3,3-trimethylpentane 1 0 -160 -1280 -4300 -7360 -6560 2816 —448
2,2,4-trimethylpentane 1 0 - 188 -1440 -4636 -7680 6688 2816 -—448
2,2-dimethylhexane 1 0 -227 -1740 -5460 -8640 7120 2880 —448
3,3-dimethylhexane 1 0 -195 -1580 -5172 -8416 -7056 -—2880 448
3-ethyl-3-methylpentane 1 0 -172 -1440 -4908 8208 6992 -2880 448
2,3,4-trimethylpentane 1 0 -179 -1428 -4740 -7968 6928 -2880 -448
2,3-dimethylhexane 1 0 -216 -1744 -5644 -9024 7392 -2944 448
3-ethyl-2-methylpentane 1 0 -191 -1616 -5424 -8880 -7360 -2944 _448
3,4-dimethylhexane 1 0 -200 -1648 -5472 -8896 7360 2944 448
2,4-dimethylhexane 1 0 -223 -1784 -5728 -9104 -7424 -2944 _448
2,5-dimethylhexane 1 0 -248 -1904 -5932 -9248 -7456 -2944 448
2-methylheptane 1 0 -291 -2268 -6884 -10240 7888 3008 -448
3-methylheptane 1 0 —-264 -2136 -6688 —10112 -7856 -—3008 -448
4-methylheptane 1 0 -255 -2112 -6648 -10096 -7856 -3008 448
3-ethylhexane 1 0 -228 -1968 6444 -9968 7824 -3008 -—448
octane 1 0 -336 -—2688 -7920 -11264 8320 3072 -448
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Table 3
The eigenvalue spectra corresponding to the alkane graph-theoretical distance polynomials
given in table 2.
Eigenvalue spectrum

Alkane X Xy X3 b A X5 Xg X7 xg
propane 27321 -0.7321 -2.0000
2-methylpropane 4.6458 —~0.6458 -—-2.0000 -2.0000
butane 5.1623 -0.5858 -1.1623 -3.4142
2,2-dimethlypropane 6.6056 -0.6056 -2.0000 -2.0000 -2.0000
2-methylbutane 7.4593 -0.5120 -1.0846 -2.0000 -3.8627
pentane 8.2882 -0.5578 -0.7639 -1.7304 -5.2361
2,2-dimethylbutane 9.6702 -0.4727 -1.0566 -2.0000 -2.0000 -—4.1409
2,3-dimethylbutane 10.0000 -0.4384 -1.0000 -2.0000 -2.0000 -4.5616
2-methylpentane 11.0588 -0.5115 -0.6730 -1.7026 -2.0000 -6.1717
3-methylpentane 10.7424 -0.4754 -0.7639 -1.3363 -2.9307 -5.2361
hexane 12,1093 -0.6359 -0.6798 -1.0000 -2.4295 - 7.4641
2,2,3,trimethylbutane 12.3945 -0.3973 -0.9692 -2.0000 -2.0000 -2.0000 ~5.0279
2,2-dimethylpentane 13.6353 —-0.4703 -0.6481 -1.6923 -2.0000 -2.0000 -6.8246
3,3-dimethlypentane 13.0698 -0.4307 -0.7639 -1.2627 -2.0000 -3.3764 -5.2361
2,3-dimethylpentane 13.6346 - 0.4325 -0.6651 -1.3089 —2.0000 -3.0055 -6.2228
2,4-dimethylpentane 14.1760 -0.5073 -0.5359 -1.6687 -2.0000 -2.0000 - 7.4641
2-methylhexane 15.4048 -0.4943 -0.6242 -0.9174 -2.0000 -2.4757 -8.8932
3-methylhexane 14.8636 —0.4749 -0.6461 -0.9171 -1.7796 -3.3529 -7.6929
3-ethylpentane 14.2969 -0.4559 -0.7639 -0.7639 -1.8410 -5.2361 -—5.2361
heptane 16.6254 ~0.5272 -0.6160 -0.8405 -1.2862 -3.2576 -10.0978
2,2 3,3-tetramethylbutane 14.9373 -0.3542 -0.9373 -2.0000 -2.0000 —2.0000 -2.0000 -5.6458
2,2,3-trimethylpentane  16.3152 -0.3971 -0.6305 -1.2999 -2.0000 -2.0000 -3.0325 - 6.9552
2,3 3-trimethylpentane  16.0683 -0.3869 -0.6625 ~-1.2355 -2.0000 -2.0000 -3.5063 -6.2770
2,2 4-trimethylpentane  17.0338 -0.4593 -0.5144 -1.6559 -2.0000 -2.0000 -2.0000 - 8.4043
2,2-dimethylhexane 18.4133 -0.4525 -0.6053 -0.8933 -2.0000 -2.0000 -2.4942 -9.9680
3,3-dimethylhexane 17.4426 -0.4294 -0.6348 -0.8925 -1.7432 -2.0000 -3.8238 -7.9190
3-ethyl-3-methylpentane 16.6705 -0.4074 -0.7639 -0.7639 -1.4828 -2.7803 -5.2361 -5.2361
2,3 4-trimethylpentane  16.8079 -0.4197 -0.5359 -1.2747 -2.0000 -2.0000 -3.1134 -7.4641
2,3-dimethylhexane 18.1815 -0.4310 -0.6207 -0.8046 -1.7789 —2.0000 -3.5950 -8.9514
3-ethy-2-methylpentane  17.4187 -0.4275 -0.6288 -0.7639 -1.8313 -2.0000 -5.2361 -6.5311
3,4-dimethylhexane 17.6759 -0.4268 -0.6000 -0.8566 -1.4606 -2.7447 -3.6153 -7.9719
2,4-dimethylhexane 18.3964 -0.4731 -0.5298 -0.8643 -1.7623 -2.0000 -3.4071 -9.3598
2,5-dimethylhexane 19.1115 -0.4605 -0.5784 -0.8095 -2.0000 -2.0000 -2.5331 -10.7300
2-methylheptane 20.4792 -0.4941 -0.5647 -0.7852 -1.2238 -2.0000 -3.3947 -12.0167
3-methylheptane 19.7628 -0.4694 -0.5911 -0.8405 -1.0393 -2.3198 -3.7491 -10.7535
4-methylheptane 19.5420 -0.4746 -0.6160 -0.7079 -1.2862 -1.9227 -4.4369 -10.0978
3-ethylhexane 18.7788 —0.4551 -0.6409 -0.7639 ~-1.0251 -2.4223 -52361 ~8.2354
octane 21.8364 -0.5198 ~0.5890 -0.7232 -1.0332 -1.6199 -4.2142 -13-1371
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and it has been shown [18] that the determinant of the distance matrix for a tree
T is independent of the structure of T and that can be given only in terms of the
number of vertices of T. This also explains why the cy coefficients of distance
polynomials belonging to isomeric alkanes are all the same.

(4) The distance spectrum consists of one positive and N — 1 nonpositive
elements. This is a result of a particular structure of the distance polynomial, i.e.
all coefficients but the very first having the negative sign.

(5) The sum of the squares of the elements in the distance spectrum is equal
to the trace of D%

(6) For complete bipartite graphs Ky, n, (N + Ny = N), the elements in the
distance spectrum are —2(N; + N, —2) times and the remaining two elements are
given by the following relationships:

X1+ x2=2(Ny+ Ny = 2), (32)
x%+ x3 = 22N} — 4N, + 2N3 — 4N? + N\N, + 4). (33)

(7) If G is an even cycle, then at least one element in the distance spectrum
is zero (for more details on the distance spectrum of a cycle, see Graovac et al. [34]).

(8) If i is the number of zero elements in the distance spectrum, then ¢, the
coefficient of x/, is given by

;=0 if j<i-1. (34)
(9) The distance polynomial of a complete graph Ky with N vertices
is given by

S(Kn;x)=(x + DN I (x = N +1). (35)
(10) If G is a star with N vertices, then its distance polynomial is given as

3Gix)=(x+ 2N [(x2 -1 (N -2)2x + 1)]. (36)

23.  THE DETERMINANT OF THE DISTANCE MATRIX

The determinant of the distance matrix and the determinant of the adjacency-
plus-distance matrix have found use as topological indices [50,52]. Therefore, the
properties of the determinant of the distance matrix are of interest and especially
the question whether this determinant can be zero and, if so, for which structures.

The determinant of the distance matrix det |D| can be obtained by expansion
of the matrix, but this is an unwieldy procedure. A much faster way is by computing
first the distance polynomial and then using the constant term as det |D|.
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The determinant of the distance matrix for a tree with N vertices is given by
a simple expression [18]:

det|D|= —(-2)V %N -1). @37

Several conclusions follow from this formula:

(1) Isomeric trees necessarily possess the same value of det|D].

(2) Det|D] alternates from negative values for trees with even N to positive
values for trees with odd N.

(3) No tree has a zero value for det |D| but the simplest tree consisting of
a single vertex.

In the case of monocycles, it has been found [111] that det |D| vanishes for
4n (n = integer) cycles.

24. THE WIENER NUMBER
The Wiener number 2-W = 2-W(G) of a graph G is defined by [28]

2-W =23 3.(D);. (38)
i

For example, the Wiener numbers corresponding to a tree T from fig. 1 and an edge-
weighted graph Ggw from fig. 2 are equal to

2-W(T') = 71, Z-W(GEw) = 85

The Wiener numbers for n-alkanes with N carbon atoms can be obtained from
a simple formula [28,39]:

2-W(n-alkane) = § N(N? - 1). (39)

Similarly, the Wiener number for cycloalkanes can be computed by means of the
following formula [80,112]:

2-W(n-cycloalkane) = 4 N{N? — 5[(1 - (=D ]}. (40)
The Wiener number of a star can also be given in a closed form [39]:
2-W(star) = (N — 1)% 41)

The Wiener numbers for alkanes with up to 10 carbon atoms are given in
table 4.

There are many algorithms for computing the distance matrix in the literature
[35,72-80] and consequently the 2-W number for any structure. The Wiener number
can also be computed by means of the adjacency matrix of a graph [113]:
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Table 4

The Wiener numbers 2-W, 3-W¢ and 3-Wy for alkanes with up to two carbon atoms.

Wiener number

Alkane 2-W 3-We 3-Wen
methane 0 0.000 15.36
ethane 1 1.532 56.88
propane 4 5.607 131.32
2-methylpropane 9 12.196 23843
butane 10 13.603 251.72
2,2-dimethylpropane 16 21.264 377.74
2-methylbutane 18 23.372 395.20
pentane 20 26.694 42597
2,2-dimethylbutane 28 35.640 571.17
2,3-dimethylbutane 29 36.945 583.43
2-methylpentane 32 41.036 620.14
3-methylpentane 31 39.726 608.00
hexane 35 46.216 669.74
2,2,3-trimethylbutane 42 52.490 797.28
2,2-dimenthylpentane 46 57.828 84490
3,3-dimethylpentane 44 55302 822.11
2,3-dimethylpentane 46 57.807 845.15
2,4-dimethylpentane 48 59.068 853.31
2-methylhexane 52 66.122 919.34
3-methylhexane 50 63.828 900.30
3-ethylpentane 48 57.762 838.30
heptane 56 73.384 989.89
2,2,3,3-tetramethylbutane 58 71.717 1054.03
2,2,3-trimethylpentane 63 77.860 1107.57
2,3,3-trimethylpentane 62 76.691 1097.57
2,2, 4-trimethylpentane 66 79.921 1121.20
2,2-dimethylhexane 71 88.454 1200.12
3,3-dimethylhexane 67 80.679 1128.11
3-ethyl-3-methylpentane 64 77.052 1095.95
2,3,4-trimethylpentane 65 79.100 1116.04
2,3-dimethylhexane 70 87.304 1191.73
3-ethyl-2-methylpentane 67 80.317 1124.20
3,4-dimethylhexane 68 85.224 1175.40
2,4-dimethylhexane 71 85.219 1164.58
2,5-dimethylhexane 74 91.060 1219.64
2-methylheptane 79 100.205 1308.98
3-methylheptane 76 96.614 1277.61

... continued
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Table 4 (continued)
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Wiener number

Alkane 2-w 3-We 3-Wey

4-methylheptane 75 95.497 1268.76
3-ethylhexane 72 86.846 1182.60
octane 84 109.510 1399.79
2,2,3,3-tetramethylpentane 82 100.374 1402.14
2,2,3,4-tetramethylpentane 86 103.723 1429.17
2,2,3-trimethylhexane 92 112.971 1511.19
2,2-dimethyl-3-ethylpentane 88 106.359 1450.39
3,3,4-rimethylhexane 88 108.463 1474.27
2,3,3,4-tetramethylpentane 84 101.733 1413.01
2,3,3-trimethylhexane 90 110.766 1493.25
2,3-dimethyl-3-ethylpentane 86 102.928 1420.38
2,2,4,4-tetramethylpentane 88 105.039 1435.09
2,2,4-trimethylhexane 94 114.216 1518.57
2,4,4-trimethylhexane 92 111.975 1500.13
2,2,5-trimethylhexane 98 118.774 1556.10
2,2-dimethylheptane 104 129.440 1658.81
3,3-dimethylheptane 98 122.411 1598.06
4,4-dimethylheptane 96 120.181 1580.25
3-ethyl-3-methylhexane 92 110.558 1487.49
3,3-diethylpentane 88 104.349 1430.61
2,3,4-trimethylhexane 92 112.167 1503.55
2,4-dimethyl-3-ethylpentane 90 107.346 1456.11
2,3,5-trimethylhexane 96 115.854 1530.93
2,3-dimethylheptane 102 126.890 1637.14
3-ethyl-2-methylhexane 96 114.766 1522.62
3,4-dimethylheptane 98 122.458 1599.99
3-ethyl-4-methylhexane 94 112.557 1504.60
2,4-dimethylheptane 102 125.983 1627.06
4-ethyl-2-methylhexane 98 115.115 1522.37
3,5-dimethylheptane 100 123.588 1605.47
2,5-dimethylheptane 104 128.838 1652.47
2,6-dimethylheptane 108 133.055 1687.31
2-methyloctane 114 144.393 1797.29
3-methyloctane 110 139.694 1757.22
4-methyloctane 108 137.212 1735.40
3-ethylheptane 104 125.580 1619.73
4-ethylheptane 102 123.555 1603.71

... continued
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Table 4 {(continued)

Wiener number

Alkane 2-W 3-We 3-Wey

nonane 120 155.820 1909.68
2,2,3,3,4-pentamethylpentane 108 129.677 1764.19
2,2,3,3-tetramethylhexane 115 139.852 1852.33
3-ethyl-2,2,3-trimethylpentane 110 139.847 1770.99
3,3,4,4-teramethylhexane 111 135.626 1818.76
2,2,3,4,4-pentamethylpentane 111 132.221 1782.18
2,2,3,4-tetramethylhexane 118 142.729 1877.27
3-ethyl-2,2 4-trimethylpentane 115 134.809 1801.01
2,3,4,4-tetramethylhexane 116 140.538 1858.26
2,2,3,5-tetramethylhexane 123 146.954 1906.31
2,2,3-trimethylheptane 130 159.492 2026.14
2,2-dimethyl-3-ethylhexane 122 146.342 1905.67
3,3,4-trimethylheptane 123 151.182 1954.57
3,3-dimethyl-4-ethylhexane 118 142.715 1877.96
2,3,3,4-tetramethylhexane 115 139.090 1846.20
3,4,4-trimethylheptane 122 150.067 1945.35
3,4-dimethyl-3-ethylhexane 117 139.514 1847.09
3-ethyl-2,3,4-trimethylpentane 112 132.675 1786.25
2,3,3,5-tetramethylhexane 120 144.147 1884.96
2,3,3-trimethylheptane 127 156.006 1996.23
2,3-dimethyl-3-ethylhexane 119 141.473 1864.18
3,3-diethyl-2-methylpentane 114 133.939 1794.84
2,2,4,4-tetramethylhexane 119 143.069 1987.23
2,2,4,5-tetramethylhexane 124 148.129 1916.57
2,2,4-trimethylheptane 131 159.916 2027.35
2,2-dimethyl-4-ethylhexane 126 146.346 1896.25
3,3,5-trimethylheptane 126 154.021 1976.33
2,4,4-trimethylheptane 127 155.349 1988.87
2,4-dimethyl-4-ethylhexane 122 146.131 1904.27
2,2,5,5-tetramethylhexane 127 151.408 1941.58
2,2,5-trimethylheptane 134 163.044 2052.19
2,5,5-trimethylheptane 131 159.644 2023.18
2,2,6-trimethylheptane 139 168.086 2092.28
2,2-dimethyloctane 146 181.606 2224 .40
3,3-dimethyloctance 138 172.426 2146.83
4,4-dimethyloctane 134 167.584 2104.49
3-ethyl-3-methylheptane 129 154.783 1980.23
4-ethyl-4-methylheptane 126 151.621 1954.76

.. . continued
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Table 4 (continued)

Wiener number

Alkane 2-W 3-We 3-Wen
3,3-diethylhexane 121 142.705 1872.36
2,3,4,5-tetramethylhexane 121 146.370 1907.95
2,3,4-trimethylheptane 128 156.365 1997.87
2,3-dimethyl-4-ethylhexane 123 144.134 1882.67
2,4-dimethyl-3-ethylhexane 122 144.730 1890.57
3,4,5-trimethylheptane 125 152.625 1965.00
2,4-dimethyl-3-isopropylpentane 117 138.256 1833.36
3-isopropyl-2-methylhexane 124 146.588 1905.28
2,3,5-trimethylheptane 131 158.829 2015.02
2,5-dimethyl-3-ethylhexane 127 147.984 1912.26
2,4,5-trimethylheptane 130 158.009 2009.28
2,3,6-trimethylheptane 136 164.668 2064.61
2,3-dimethyloctane 143 177.743 2191.63
3-ethyl-2-methylheptane 134 160.204 2026.81
3,4-dimethyloctane 137 171.126 2136.17
4-isopropylheptane 131 156.578 1997.73
4-ethyl-3-methylheptane 129 154.748 1981.17
4,5-dimethyloctane 135 168.681 2114.29
3-ethyl-4-methylheptane 130 155.372 198491
3,4-diethylhexane 125 145.646 1894.07
2,4,5-trimethylheptane 135 162.214 2039.83
2,4-dimethyloctane 142 175.753 2171.92
4-ethyl-2-methylheptane 134 158.719 2012.39
3,5-dimethyloctane 138 171.126 2132.56
3-ethyl-5-methylheptane 133 156.967 1994.81
2,5-dimethyloctane 143 177.291 2186.04
5-ethyl-2-methylheptane 138 163.675 2053.96
3,6-dimethyloctane 141 175.262 2169.96
2,6-dimethyloctane 146 180.599 2213.68
2,7-dimethyloctane 151 186.839 2268.53
2-methylnonane 158 200.100 2398.37
3-methylnonane 153 194.111 2346.10
4-methylnonane 150 190.381 2313.66
3-ethyloctane 145 175.850 2170.31
5-methylnonane 149 189.147 2302.73
4-ethyloctane 141 171.243 2130.45
4-propylheptane 138 162.527 2050.32
decane 165 213.635 2531.95

241
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Inax
2w =13 Suady, (42)
i=1 I=1

where [ is the length of the shortest path between two vertices in G and A, are the
corresponding higher-order adjacency matrices.

The Wiener number is not a particularly discriminating index. Already in the
heptane family appear two pairs of C; trees with the same Wiener numbers [39].
These trees are shown in fig. 7.

W =48 W=148
W =46 W =46

Fig. 7. Two pairs of heptane trees with identical Wiener numbers.

The Wiener number appears to be a good measure of the compactness of a
molecule [39]: The smaller the Wiener number, the larger the compactness of a
structure (in terms of structural features such as branching and cyclicity). Hence,
it can be reliably used for correlations with those physical and chemical properties
which depend on the ratio of the volume to the surface of the molecule. Chromatographic
retention data for a homologous series of hydrocarbons are typical molecular properties
for which the quantitative structure—property relationships (QSPR) with the Wiener
number should yield trustworthy predictions [54,114—117]. For example, the following
relationship between the experimental gas-chromatographic retention indices / measured
on squalane at 333 K [118] and at 373 K [119] and the 2-D Wiener numbers of the
first 157 alkanes,

I=a@2-W)t +c, (43)

possesses very good statistical characteristics [54]: a=171.2 (£15.7), b = 0.3347
(£0.0128), c =48.6 (£27.3), r=0.984, s=33.0 and F = 2403.
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3. The geometric-distance matrix and the corresponding invariants

Most of the definitions given in the preceding section for the graph-theoretical
distance matrix and the related topological invariants also apply in the modified
form to the geometric-distance matrix and its invariants.

3.1. THE GEOMETRIC-DISTANCE MATRIX

While the graph-theoretical distance matrix 2-D captures the constitutional
features of the molecule, its three-dimensional (3D) character is encoded in
the geometric-distance matrix [5,6,11,13,44]. This matrix will be denoted here
by 3-D.

The geometric-distance matrix 3-D = 3-D(G) of a molecular structure G is a
real symmetric N X N matrix defined in the same way as the 2-D matrix (see (1)).
However, the matrix elements (D);; now represent the shortest Cartesian distances
l;j (in some arbitrary units of length) between sites i and j in G. The geometric-
distance matrix (also called the topographic matrix [44]) can be constructed from
the known geometry of a molecule. However, for many molecules their geometries
are unknown. Therefore, one must approximate the geometry of a molecule in some
way. This can be done, for example, by quantum mechanical computations [13, 120]
or by molecular mechanics computations [54,121, 122] or by constructing idealized
“frozen” 3D geometry of a molecule using standard bond lengths and bond
angles [44,48]. It appears that at present the most convenient method to
optimize the geometry of an arbitrary molecule is the molecular mechanics
method [123]. All results reported here will be based on the molecular mechanics
(MM) computations.

As the input data for the MM computations, the intuitively most stable
conformation of a particular molecule was selected. This conformation was constructed
from data for the standard bond lengths and bond angles. For example, in the case
of alkanes it is possible to consider all conformations for smaller and simpler
members of the series. In the case of larger and more complex alkanes, this cannot
be done because the number of possible conformations increases enormously [124].
However, all conformations need not be considered. It is sufficient to take into
account only those conformations which are present in the equilibrium mixtures in
reasonable amounts, probably greater than a few percent. A simple estimate reveals
that if one gauche-butane (g) interaction contributes to the enthalpy =3.4 kJ/mol,
then it is not necessary to consider conformations with more than 3 or 4 gauche-
butane interactions relative to the minimum energy conformation. The minimum
energy conformation of an alkane is taken to be the most extended conformation
with the minimum number of gauche-butane interactions, excluding the “forbidden”
pentane (g*g”) interactions.
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These input geometries were then refined via molecular mechanics computations,
giving the chosen conformation optimum bond lengths, bond angles and interatomic
distance. The alkane geometry obtained in this way was used to set up the corresponding
geometric-distance matrix. The elements of 3-D, i.e. the distances between atoms
in the alkane (3-D);;, were computed from the Cartesian coordinates, which are part
of the standard output of the MM programs:
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Scheme 1.

(3-D)y =[Cxi— x;)* + O = y)* + (zi = 2;* 12

As an example, the geometric-distance matrix of the carbon skeleton of 2,4-

dimethylhexane is given in fig. 8.

3-D

[}

0.0000
1.5405
2.5256
3.9526
5.0748
5.4288
251865
4.5071

8

1.5405
0.0000
1.5429
2.6274
3.9754
4.5721
1.5377
3.0959

2.5256
1.5429
0.0000
1.5433
2.5563
3.1195
2.5589
2.5537

3.9526
2.6274
1.5433
0.0000
1.5454
2.5887
3.1335
1.5401

5.0748
3.9754
2.5563
1.5454
0.0000
1.5352
4.5670

2.5140

5.4288
4.5721
3.1195
2.5887
1.56352
0.0000
4.9832
3.9131

2.5165
1.5377
2.5599
3.1335
4.5670
4.9832
0.0000
3.6689

Fig. 8. The geometric-distance matrix corresponding
to the carbon skeleton of 2,4-dimethylhexane.

4.5071
3.0959
2.5537
1.5401
2.5140
3.9131
3.6689
0.0000
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[ 0.000 1.534 2544 3914 5092 6.420
1534 0000 1537 2548 3918 5.092
2544 1537 0.000 1537 2548 3914
3914 2548 1537 0.000 1537 2544
5092 3918 2548 1537 0.000 1.534
6.420 5092 3914 2544 1534 0.000

3-D(aaa) =

8(aaa; x) = x6-176.80 x4 - 1065.35 x3 - 2338.49 x2 - 2209.57 x - 761.64
spectrum: {15.9216, -1.0561, -1.1600, -1.4022, -2.9899, -9.3133 }
3-W(aaa) = 46.216

e
w

[ 0.000 1535 2544 3914 5117 5555
1535 0.000 1538 2548 3.934 4586
2544 1538 0.000 1537 2574 3.161
3914 2548 1537 0.000 1538 2571
5117 3934 2574 1538 0.000 1534
55585 4586 3.161 2571 1534 0.000

3-D(aag) =

8(aag; x) = x6-156.86 x4 - 938.50 x3 - 2067.51 x2 - 1963.81 x - 679.41
spectrum: { 15.1184, -1.0254, -1.1493, -1.5317, -2.9382, -8.4739 )
3-W(aag) = 44.186

Fig. 9. Caption follows.

245
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0.000 1535 2543 3930 4594 6.070
1.535 0.000 1537 2576 3.168 4.595
2543 1537 0.000 1539 2576 3.930
39830 2576 1539 0000 1537 2543
4594 3.168 2576 1537 0.000 1535

6.070 4595 3930 2543 1535 O.OOOJ

3-D(aga) =

8aga; x) = xb - 158.01 x4 -956.96 x3 - 2125.46 x2 -~ 2037.24 x - 712.43
spectrum: {15.1923, -1.0224, -1.3163, -1.3449, -3.0703, -8.4383 )

3-W(aga) = 44.209

[ 0.000 1534 2570 3.134 3.768 4.946
1534 0.000 1538 2603 3.148 4595
2570 1538 0.000 1.538 2575 3.930
3.134 2603 1538 0.000 1537 2543
3.768 3.148 2575 1537 0.000 1535

4946 4595 3930 2543 1535 0.000

3-D(agtg*) =

Slagtg*; x) = x0-133.24 x4 - 799.45 x3 - 1784.31 x2 - 1718.44 x - 598.62
spectrum: (14.1217, -0.9240, -1.3374, -1.5472, -3.0545, -7.2586 )
3-W(ag*g*) = 41495

Fig. 9 (continued). Caption follows.
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1

- 0.000 1.534 2589 3.145 4.608 5.082
1534 0.000 1539 2573 3945 4.608
2569 1539 0.000 1.537 2573 3.144
3.145 2573 1537 0000 1539 2569
4608 3.945 2573 1539 0000 1534
5.082 4.608 3.144 2569 1534 0.000

3-D(g*agt) =

8(grag*; x) = x6 - 141.89 x4 - 841.01 x3 - 1864.48 x2 - 1783.06 x - 617.21
spectrum: { 14.4740, -0.9439, -1.1845, -1.7866, -2.7250, -7.8340 )
3-W(gtag*) = 42.500

0.000 1534 2574 3173 4582 5574
1534 0.000 1539 2574 3.953 4581
2574 1539 0000 1537 2574 3.180
3173 2574 1537 0.000 1539 2574
4582 3953 2574 1539 0.000 1.534

5574 4581 3180 2574 1534 0000

3-D(gtag’) =

3(gtag; x) = x6-147.18 x4 - 873.03 x3 - 1943.41 x2 - 1866.68 x - 650.32
spectrum: {14.7021, -1.0140, -1.0830, -1.9451, -2.5549, -8.1051 }
3-W(g*ag) = 43.024

Fig. 9 (continued). Caption follows.
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6

[ 0.000 1534 2569 3.138 3.743 4.763
1534 0.000 1538 28601 3.149 3743
2569 1538 0000 1538 2601 3.138
3.138 2601 1538 0.000 1538 2569
3.743 3.149 2601 1538 0.000 1.534

4763 3.743 3138 2569 1.534 0.000

3DEgg) =

8lg-gg;x) = x6 - 118.85 x4 - 706.57 x3 - 1590.45 x2 - 1541.83 x - 537.09
spectrum: {13.4477, -0.9013, -1.2112, -2.0074, -2.7861, -6.5417 )
3-W(ggg) = 39.697

Fig. 9. The geometric-distance matrices and their invariants
for the seven energy-lowest conformations of n-hexane.

It should be noted that the geometric-distance matrix determines uniquely a
given structure to the extent that the corresponding conformation is unique to this
structure. Therefore, the geometric-distance and consequently the related topographic
invariants are different for different conformations of the molecule. To illustrate
this statement, in fig. 9 are given the geometric-distance matrices and their invariants
for the seven energy-lowest conformations out of 12 possible conformations of n-
hexane.

3.2.  THE GEOMETRIC-DISTANCE POLYNOMIAL AND THE GEOMETRIC-DISTANCE
SPECTRUM

The geometric-distance (topographic) polynomial is defined in the same way
as the graph-theoretical distance polynomial. Similarly, it is also computed using
the modified form of the Le Verrier—Faddeev—Frame method [122]. As an example,
a computing of the geometric-distance polynomial for butane is shown in table 5.
The geometric-distance matrix is also diagonalized by the Householder-QL algorithm
combination. The geometric-distance spectrum of butane is given by {6.9704, —
1.1655, —1.5239, -4.2810}.

In table 6 and table 7, the geometric-distance polynomials and spectra,
respectively, of the lowest alkanes are given.

The geometric-distance polynomials possess many interesting properties:

(1) They can differentiate isospectral molecules.
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Table 5

The computation of the geometric-distance polynomial of butane by means of the modified
Le Verrier—Faddeev—Frame method.

(i) Geometric-distance spectrum of butane

{6.97, -1.17, -1.52, ~4.28}

(i1) Z(D)ﬁ = Z(Dl )i=0
Cy= 0 x
i) {(By=(Dy)i— (eDi)ia,..s = (6.97, ~1.17, ~1.52, ~4.28}
{(D2)ii = (D) (B1)ii}i=1,... .4 = [48.59, 1.36, 2.32, 18.33)
€= 2 2(D2)u =35.30
(iv) {(B2)i = (D2 )i — (2D }im
{(D3)i = (D) (B2)is}i=
€3 = %» Z(D:; ),'; = 85.03

.....

.....

W {(B3); = (D3); - (031).'.'};:1,,..‘4 ={(7.60, —45.47, -34.77, ~12.38}
{(Dg)ii = (D) (Badigi=y, . . ., 4 = {53.00, 53.00, 53.00, 53.00}

o4 = % 2(Dy4 )i = 53.00
H

i) {(Ba)i = Dy)ii— (esDitlim,.. . 4 =10, 0, 0, 0}

,,,,,

(vii) The geometric-distance polynomial of butane

8(butane; x) = x* — 35.30x% — 85.03x — 53.00

For a pair of isospectral trees Ty and 7, from fig. 4 are given their geometric
distance matrices, geometric-distance polynomials, geometric-distance spectra and
three-dimensional Wiener numbers in table 8. All these quantmes are different for
each of these two trees.

(2) Two non-isomorphic molecules cannot possess identical geometric-distance
polynomials unless they possess identical optimum conformations.

(3) Since different conformations of a molecule have different geometric-
distance matrices, they consequently also possess different polynomials (and spectra).
(see examples in fig. 8)

(4) The coefficient ¢y and c; at x and xV ~! are, respectively, equal to 1 and
0, as was the case for the graph-theoretical distance polynomial.

The coefficient c; is equal to zero because relationship (28) holds also for
the elements of the geometric-distance spectrum.

(5) Similarly, the coefficient ¢, at x¥ =2 is equal to the half-sum of squares
of elements of the geometric-distance matrix:



250 Z. Mihali¢ et al., The distance matrix in chemistry

Table 6

The geometric-distance polynomials of the lowest alkanes.

Coefficients of the polynomial
Alkane ¢y € cy Cy C4 Cs Cg cq Cg
propane 1 0 -11.154 -1195
2-methylpropane 1 0 -26262 -68.16 ~45.3
butane 1 0 -35297 -8503 -~ 53.0
2,2-dimethylpropane 1 0 -47500 -199.23 -3008 -151.4
2-methylbutane 1 0 -60462 -253.04 -360.0 -166.7
pentane 1 0 -85388 -34652 -4664 -205.9
2,2-dimethylbutane 1 0 -91.882 -546.50 -1284.1 -1332.4 -4993
2,3-dimethylbutane 1 0 -100311 -599.41 -13740 -1378.5 -502.6
2-methylpentane 1 0 -131.363 -790.06 -18013 -17753 - 633.8
3-methylpentane 1 0 -121364 -733.40 -16804 -1657.5 -590.0
hexane 1 0 -176.801 -1065.35 -2338.5 -2209.6 -761.6
2,2,3-trimethlybutane 1 0 -142387 -1109.38 -3635.6 -5948.6 -47477 -1455.0
2,2-dimethylpentane 1 0 -183166 -1458.49 -47985 -7808.2 -6154.5 -1864.9
3,3-dimethylpentane 1 0 -164.005 -1302.34 42943 -6990.2 -54782 -1638.5
2,3-dimethylpentane 1 0 -181.596 -1458.92 -47489 -75389 -5771.6 -1702.0
2,4-dimethylpentane 1 0 -190.868 —~152232 -4990.0 -80623 -6296.5 -1890.2
2-methylhexane 1 0 -253.653 -2053.91 -6627.1 -10345.0 -~7782.4 -2263.2
3-methylhexane 1 0 -233675 -1917.10 -6251.5 -9830.8 -7323.7 -2159.8
3-ethylpentane 1 0 -179.080 -1477.89 -4909.3 -7878.4 -60375 -1764.7
heptane 1 0 -326644 -271699 -8597.4 -13007.2 -9487.8 -2687.0
2,23 3tetramethylbutane 1 0 -198.470 ~-1909.74 -8089.4 - 183463 -23011.0 - 14965.3 -3906.48
2,2,34trimethylpentane 1 0 -243.866 -2438.63 -10522.4 -23998.1 -29950.4 -19215.6 -4930.08
2,3,3-trimethylpentane 1 0 -235154 -2345.07 -10116.0 -23063.9 -28730.7 -18352.5 —4673.85
2,2 4-trimethylpentane 1 0 -259.393 -2570.98 - 10981.3 ~24846.2 -30853.9 -19747.4 -5070.54
2,2-dimethylhexane 1 0 -336.122 -3416.96 -14697.2 -133105.8 —40626.9 -25638.9 - 6499.82
3,3-dimethylhexane 1 0 -264.032 -2729.81 -11977.7 ~27395.5 -33955.0 ~21533.7 —5458.13
3-ethyl-3-methylpentane 1 0 -235.538 -2401.15 -10513.0 -24071.8 -29834.8 - 18865.1 —4750.49
2,3,4-trimethylpentane 1 0 -251.713 -2531.52 -10924.3 -24824.5 -30794.6 -19607.3 —4989.30
2,3-dimethylhexane 1 0 -323.059 -3356.55 -14497.6 -32286.7 —-38870.8 -24016.5 —5968.48
3-ethyl-2-methylpentane 1 0 -259.556 -2680.47 -11666.0 -26384.2 -32318.1 -20258.5 ~5076.28
3,4-dimethylhexane 1 0 -305864 -3157.05 -13655.4 -30498.7 -36781.5 —22713.5 —~5627.33
2,4-dimethylhexane 1 0 -300.331 -3110.47 -13549.6 -30664.3 -37567.3 -23560.3 —5916.72
2,5-dimethylhexane 1 0 -355896 —-3627.52 —15559.8 -34816.5 —42324.0 -26411.1 —6615.76
2-methylheptane 1 0 -451.316 -4747.84 -20283.0 -44519.9 -53797.9 —-32188.8 —-7914.79
3-methylheptane 1 0 -415245 -4395.88 - 18994.1 -41969.5 -49960.5 —30497.5 ~7493.75
4-methylheptane 1 0 -403.220 —4341.69 -18904.1 -41948.2 -50085.3 -30644.7 -7542.73
3-cthylhexane I 0 -316259 -3373.85 -14929.1 -133810.3 -41075.0 —25419.2 - 6281.49
octane 1 0 -556.748 -6090.57 -25969.8 -55848.4 - 64624.8 —38478.3 —9267.11
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Table 7
The geometric-distance spectra corresponding to the alkane geometric-distance polynomials
shown in table 6.
Geometric-distance spectrum

Alkane x; X, X3 X4 X5 Xg X7 Xg
propane 3.7832 -1.2441 -2.5391
2-methylpropane 6.1996 -1.1434 -2.5281 -2.5281
butane 6.9704 -1.1655 -1.5239 -4.2810
2,2-dimethlypropane 8.6483 -1.0985 -2.5164 -2.5165 -2.5168
2-methylbutane 9.5454 -1.0101 -1-5251 -2.5326 -4.4776
pentane 10.9961 -1.1209 -1-1711 -2.1892 -6.5148
2,2-dimethylbutane 12,1062 ~0.9206 -1.5272 -2.5154 -2.5263 -4.6168
2,3-dimethylbutane 12.5504 -0.9533 -1.5171 -1.6063 -3.3972 -5.0775
2-methylpentane 14.0492 -1.0074 -1.1309 -2.1449 -2.5632 -7.2028
3-methylpentane 13.6028 -0.9914 -1.1159 -2.1402 -2.7905 -6.5648
hexane 159216 -1.0561 -1.1600 -1.4022 -2.9899 -9.3133
2,2,3-trimethylbutane 15.2492 - 0.8559 -1.5190 -1.6068 -2.5167 -3.3772 -5.3735
2,2-dimethylpentane 16.9571 -0.9182 -1.1318 -2.1319 -2.5155 -2.5645 -7.6952
3,3-dimethlypentane 16.2011 -0.8724 -1.1098 -2.1355 -2.5124 -2.9326 -6.6383
2,3-dimethylpentane 16.9139 -0.9451 -1.0955 -1.5911 -2.2513 -3.7018 ~-7.3290
2,4-dimethylpentane 17.2492 -0.9361 -1.0752 -2.1375 -2.2786 -2.7794 —8.0424
2-methylhexane 19.4485 -1.0015 -1.1002 -1.3073 -2.5614 -3.0141 -10.4640
3-methylhexane 18.8318 -0.9816 —1.0664 -1.3837 -2.3873 -3.4787 -9.5340
3-ethylpentane 16.8955 -0.8727 -1.1150 -1.5906 -2.3230 -4.4172 -6.5771
heptane 21.7105 -~1.0250 -1.1104 -1.3128 -1.6389 -4.0059 -12.6176
2,2,3,3-tetramethylbutane 18.1965 —0.8256 —1.5150 -1.5966 -1.5966 —3.3741 -3.3741 -59146
2,2 3-trimethylpentane  19.9044 -0.8532 -1.1040 -1.5836 -2.2041 -2.5586 -3.7509 - 7.8499
2,3,3-trimethylpentane  19.6049 -0.8300 -1.0912 -1.5913 -2.1884 -2.6799 -3.7977 -7.4263
2,2 4-trimethylpentane  20.3752 -0.9106 -1.0100 -1.7455 -2.1413 ~-2.5521 -3.2280 -8.7877
2,2-dimethylhexane 227522 -09179 -1.0919 -1.2870 -2.5155 ~2.5642 -3.0251 -11.3506
3,3-dimethylhexane 20.6735 - 0.8690 -1.1283 -1.3092 -2.1655 -2.5697 -4.6052 -8.0267
3-ethyl-3-methylpentane 19.6954 -0.8415 -1.1102 -1.3111 -2.1412 -29372 -4.7191 -6.6352
2,3 4-trimethylpentane  20.1793 -0.8554 -1.0673 ~1.5910 -2.1741 -2.4508 -3.9470 -8.0937
2,3-dimethylhexane 22.4563 -0.9449 -1.0648 -1.2927 -1.6368 -2.8256 ~4.2192 -10.4723
3-ethy-2-methylpentane 20.5212 -0.8585 -1.0895 -1.3866 -2.0525 -2.3550 -5.2202 —7.5588
3,4-dimethylhexane 21.9365 ~0.9377 -1.0064 ~-1.3784 -1.5931 -3.3342 -3.7285 -9.9583
2 4-dimethylhexane 21.7890 -0.9009 -1.0676 -1.2834 -2.1750 -~2.5083 -4.1596 ~-9.6943
2,5-dimethylhexane 23.3045 -0.9337 ~1.0294 -1.2751 -2.2911 -2.8035 -3.0167 -11.9551
2-methylheptane 25.8407 -0.9737 —-1.0988 -1.1815 -1.6219 -2.5700 -4.0535 -14.3413
3-methylheptane 24.9881 -0.9728 ~1.0629 -1.1946 -1.6111 -2.6949 -4.2292 -13.2227
4-methylheptane 24.7474 -0.9789 -1.0206 -1.2598 -1.6398 -2.4291 -4.8291 -12.5901
3-ethylhexane 22.3642 -0.8727 ~-1.0579 -1.3716 -1.5902 -3.0843 -4.6388  —9.7487
octane 28.3908 -1.0206 -1.0425 -1.3052 -1.3595 -2.0304 -5.1739 -16.4587
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Table 8

The geometric-distance matrices and the corresponding topographic invariants for a pair
of isospectral trees T, and T, from fig. 4.

i I
7 0.000 1542 2.577 3.948 5184 6.474 7.727 9.008 2.495 3.027 ]
1.542 0.000 1.554 2.567 3.971 S112 6.466 7.654 1.542  2.558
2.577 1554 0.000 1547 2608 3.956 5154 6.468 2578 1541
3.948 2567 1.547 0.000 1.539 2.551 3.921 5.095 3.045 2.540
(T} = 5.184 3.971 2.608 1.539 0.000 1.539 2.550 3.916 4.490 3.043
V)= 6.474 5112 3.956 2551 1539 0.000 1.537 2544 5.323 4.519
7.727 6.466 5.154 3.921 2.550 1.537 0.000 1535 6.766 5.447
9.008 7.654 6.468 5.095 3.916 2.544 1.535 0.000 7.769 6.876
2.495 1542 2.578 3.045 4.490 5323 6.766 7.769 0.000 3.940
| 3.027 2.558 1.541 2.540 3.043 4.519 5447 6.876 3.940 0.000 |
8(Ty;x) = x'° — 890.23710x® — 14050.002x” — 94413.665x° —~ 346165.72x> — 757079.31x*
—1015388.6x3 — 819381.17x2 — 365316.45x — 69157.02
spectrum: (36.742, —0.9354, -1.0322, ~1.1136, —1.3271,
~1.5399, —2.1225, —3.6744, —5.6886, —19.308}
3-W(T) =177.74
(i) T,
T 0.000 1536 2.588 3.921 5.214 6.440 7.781 8973 3129  5.509
1.536  0.000 1546 2.526 3.962 5039 6447 7.550 2.547 4.524
2.588 1.546 0.000 1.546 2.641 3.961 5221 6.481 1538 3.126
3.921  2.526 1.546 0.000 1546 2.525 3.926 5.053 2.552 2.552
D) 5.214 3.962 2.641 1.546 0.000 1.546 2.594 3.944 3.130 1.538
2 pownd

6.440 5.039 3.961 2.525 1546 0.000 1.538 2.544 4.528 2.550
7.781 6.447 5.221 3926 2594 1.538 0.000 1535 5528 3.130
8973 7.550 6.481 5.053 3.944 2.544 1535 0.000 6.855 4.568
3129 2547 1.538 2.552 3.130 4.528 5.528 6.855 0.000 3.700
| 5.509 4.524 3126 2.552 1538 2.550 3.130 4.568 3.700 0.000

8(Ty;x) = x'% - 815.77130x% - 12909.212x” ~ 87555.643x° — 325954.92x° — 725877.12x*
- 991173.44x% — 812618.11x? — 366912.23x — 70084.37

spectrum: (35.458, —0.9061, —0.9912, ~1.0954, —1.3436,
-1.8074, —2.6972, ~2.8857, —5.9918, —17.740)

3-W(Ty) =171.13
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=23, 3,(3-D%);. (45)
P

(6) The last coefficient cy of a geometric-distance polynomial for a tree T
is also equal to the determinant of the geometric-distance matrix:

cy = (DV det |3-D)). (46)

The geometric-distance spectra exhibit many of the properties summarized in
the preceding section for the distance spectra of graphs, so they will not be repeated
here.

This striking similarity between the graph-theoretical distance matrix and the
geometric-distance matrix and their invariants may perhaps be explained by exploring
the idea that the 3D structure of a molecule may be represented by the edge-
weighted complete graph [122] (the 2D model of a molecule). The edge-weights in
such a graph may correspond to geometric distances between the atoms in a molecule.
For example, the anti,anti-conformation (aa) of n-pentane may be depicted by the
edge-weighted graph Ggw shown in fig. 10. Thus, the graph-theoretical distance
matrix Ggw is identical to the geometric-distance matrix of the carbon skeleton of
the n-pentane (aa) conformation.

Wg

Gew

Fig. 10. The edge-weighted graph Ggw corresponding to the anti,anti (aa) conformation
of n-pentane. w;’s stand for the edge-weights which are equal to the geometric
distances between the carbon atoms in the (aa) conformation of n-pentane. Because
of the symmetry, there are only six different weights (different geometric distances):
wy (1.534 A), wy (2.544 A), w3 (3.914 A), w, (5.087 A), ws (1.537 A) and wg (2.548 A).

Since most of the above graph-theoretical results apply also to weighted
graphs, they likewise apply to the geometric-distance matrix and its invariants.
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33. THE DETERMINANT OF THE GEOMETRIC-DISTANCE MATRIX

No work has so far been reported in which any use of the determinant of the
geometric-distance matrix det |3-D| is mentioned. Therefore, the only use that one
can see for det |3-D| is for checking the constant term in the geometric-distance
polynomial of a tree (see (46)). In addition, det |3-D| should also be different for
different structures, be they isospectral molecules or conformers of a given molecule.

34. THE 3D WIENER NUMBER

The 3D Wiener number, denoted as 3-W, is defined as the half-sum of the
elements of the geometric-distance matrix [48]. The half-sum of the elements of the
geometric-distance matrix is named the 3D Wiener number because of its similarity
with the definition of the 2D Wiener number (see (38)).

The 3D Wiener numbers for the carbon skeletons (3-W¢) and the whole CH
skeletons (3-Wey) of alkanes with up to 10 carbon atoms are also given in table 4.

The 3D Wiener number appears to be a very discriminating index. So far, a
pair of non-isomorphic structures with the same 3-W number has not been detected.
However, such a case may emerge because there is a considerable loss of information
on going from the geometric-distance matrix to the Wiener number. For example,
a given structure may uniquely be reconstructed from its geometric-distance matrix,
but not on the basis of its Wiener number.

The 3D Wiener number also differentiates between the conformations of a
molecule (see fig. 9). It should be noted that the 3D Wiener number changes with
the change in the structure of each conformation, being the largest for the most
extended conformation and the smallest for the most compact conformation. The
similar decrease in the Wiener number can be observed on going from a linear
isomer to a branched isomer. Therefore, the 3-W number decreases with increasing
spheroidicity of a molecule. This parallels the observation for the 2D Wiener number,
which decreases with increasing branching (and/or cyclicity) of a structure [39].
Hence, it appears that the 3D Wiener number may be a convenient index to model
the shape of a molecule. Thus, it is expected to be the most useful in the correlations
with shape-dependent physical, chemical or biological properties.

For illustrative purposes, here will be given the quantitative structure—
chromatographic retention relationships (QSCRR) with 3-W¢ and 3-Wy indices,
respectively. The same algebraic formula (43) as before and the same set of experimental
gas-chromatographic data for the first 157 alkanes [118,119] will be used. The
following QSCRR models, after the appropriate statistical work, were obtained [54]:

e = 170.6 (£17.0) (3-W()03245 (x0.0133) _ 371 8 (£30.2) (45)

with fair statistical characteristics; r = 0.982, s = 35.6 and F = 2048, and:
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Loaic = 119.5 (£21.8) (3-Wcp)*2¥ E00179) _202.9 (+57.0) (46)

with better statistical parameters: r = 0.986, s = 31.0 and F = 2728.

It is interesting to note that the QSCRR model with 2-W index possesses
slightly better statistical characteristics than the QSCRR model with 3-W, index.
The QSCRR model with 3-Wy index produced the best statistical parameters of the
three models considered. The 3-Wcy reflects well the structure of a molecule via
the geometric-distance matrix. Thus, it appears that the structural characteristics of
molecules are one of the most important factors responsible for molecular migration
in the chromatographic process.

4. Concluding remarks

In this report, the graph-theoretical (topological) distance matrix and the
geometric-distance (topographic) matrix and their invariants (polynomials, spectra,
determinants and the Wiener numbers) are discussed. The methods for computing
all these quantities are presented. It is worth noting that in most cases the results
obtained by means of the topological distance matrix and its invariants are comparable
to those obtained by means of the topographic distance matrix and related invariants.
The topological and topographic distance matrices are related via the complete
weighted graphs, subgraphs of which correspond to graphs of molecules, while the
weights correspond to geometric distances between atoms in the molecules in question.

The discriminating power of topological invariants is less than that of topographic
invariants. At this point, it appears that the geometric-distance matrix and its invariants
are unique molecular descriptors. These quantities can be used to differentiate the
isospectral molecules and conformational isomers. In this way, they represent a
novel basis for modeling 3D properties of molecules via appropriate QSPR
approaches [14,44,45,48,54,57,121,122,125].
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